## ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ





### **UNIVERSITY OF CRETE**

# DEPARTMENT OF MATERIALS SCIENCE & TECHNOLOGY

Ηράκλειο, 13/10/2021

# ΑΝΑΚΟΙΝΩΣΗ

## Η ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Της φοιτήτριας Μανιαδή Μαρίας, θα γίνει την

**Τρίτη 19/10/2021** και ώρα **12:00** 

στην αίθουσα Β2 του Κτιρίου Χημείας

Θέμα Διπλωματικής:

« 2D Hybrid Double Halide Perovskites »

Για την παρακολούθηση της παρουσίασης δια ζώσης, το κοινό θα πρέπει να έχει τα απαραίτητα δικαιολογητικά (πιστοποιητικό εμβολιασμού, νόσησης ή ράπιντ τεστ).

#### **Abstract:**

The present Diploma Thesis deals with the synthesis of artificial 2D Hybrid Double Halide Perovskites, consisting of ordered materials where silver  $(Ag_+)$  and indium  $(In_{3+})$ , bismuth  $(Bi_{3+})$  or antimony  $(Sb_{3+})$ . In the studied system silver and the trivalent metal order crystallographically to produce the new series of compounds with a general chemical formula of  $(4-AMP)_2AgMBr_8.0.5H_2O$  (4-AMP) is the doubly protonated cation of 4-aminomethyl piperidine,  $M_{3+} = In$ , Sb, Bi). These materials have become an active research area in the last 3 years, due to the diversity in their crystal structure, as well as their promising optical and electronic properties.

The new compounds, which possess the Dion-Jacobson structure-type, have been characterized by singlecrystal X-ray diffraction and their optical properties at room temperature were determined. The compounds possess a strong optical absorption in the visible likely deriving from a direct band gap transition. Moreover, selected members of the (4-AMP)<sub>2</sub>AgSb<sub>1-x</sub>Bi<sub>x</sub>Br<sub>8</sub>.0.5H<sub>2</sub>O solid solutions were synthesized in order to study the evolution of the band gap as a function of the chemical composition. The present work edges one step further towards the understanding the structure-property relationships in these emerging, 2D Hybrid Double Halide Perovskites and the underlying physical properties that may lead to useful optoelectronic applications.