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Abstract

We analyze a statistical system with an energy functional which is proportional to the linear size of the surfaces. We find
a dual system, whose high temperature expansion generates random surfaces with a linear amplitude. In this model the
independent variable is placed at the vertices of the 3D cubic lattice and takes four values. The interaction is nearest
neighbour and anisotropic. These dual systems have the same relation to each other as the 3D Ising ferromagnet has to the

3D gauge spin system.

0. An alternative model of the string theory which
is based on the extension of the Feynman integral
over paths to an integral over surfaces, so that both
amplitudes coincide in the cases when the surface
degenerates into a single particle world line was
suggested in Refs. [1,2]. To study the physical prop-
erties of this string with linear action it is important
to find the field theoretical representation of the
partition function in terms of local variables. In the
recent articles [3,4] the authors formulated a new
class of statistical systems, whose interface energy is
associated with the edges of the interface. These
systems have a geometrical representation of the low
temperature partition function in terms of the sum
over paths and surfaces, with an amplitude which is
proportional to the total curvature of the path on the
two-dimensional lattice and to the linear size of the
surface in three dimensions [5,1,2,6-8].

This lattice implementation of the linear string
crucially depends on the way we ascribe weights to

self-intersections. It was suggested in Ref. [1] to
assign special weights to self-intersections depending
on a parameter k, which can be named the self-inter-
section coupling constant [4]. One can distinguish
different cases through the value of k: (i) k=0, the
“‘bosonic’’ case, (ii) 0 < k<, ‘‘soft-fermionic’’
and (iii) k= o, the **fermionic’’ case [4]. The form
of the Hamiltonian H* and the symmetry of the
system essentially depends on k: when k # 0 one
can flip the spins on arbitrary parallel layers and thus
the degeneracy of the ground state is equal to 3 X 27,
where N is the size of the lattice. When k=0 the
system has even higher symmetry and the degener-
acy of the ground state is equal to 2°". In terms of
the Ising spin variables o, the Hamiltonian of the
system k = 0 has the form {4]

3D —
Hgonihedric_ Z 0,0 a0t a+gTr+ B> (1)
r.a.p
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where r is a three-dimensional vector on the lattice
Z®, whose components are integer, and a, B are
unit vectors parallel to the axes. We should stress
that the Ising spins in (1) are on the vertices of the
lattice Z* and are not on the links. In addition to the
usual symmetry group Z, system (1) has an extra
symmetry: one can independently flip the spins on
any combination of planes, even on the intersecting
ones. This system is a sort of supersymmetric point
in the ‘‘space’’ of gonihedric Hamiltonians H*. Our
aim is to construct a Hamiltonian which is dual to
Hg)heare (1) and equally well describes surfaces
with a linear amplitude. The enhanced symmetry of
system (1) plays an essential role in our construction
of the dual system. But let us first review the known
results in the case of the Ising model.

1. The low temperature expansion of the Ising
ferromagnet has a beautiful geometrical representa-
tion of the partition function in terms of the sum
over the paths on the two-dimensional lattice and
over the surfaces on the three-dimensional lattice.
The corresponding amplitudes are proportional to the
length of the paths and to the area of the surfaces.
This geometrical representation allows one to show
that the high temperature expansion of the 2D Ising
ferromagnet is the same as the low temperature
expansion and that the system is therefore self-dual
[9-14). In the case of the 3D Ising ferromagnet

Hl::[i)ng =- Z oo, (2a)

links

the high temperature expansion does not coincide
with its low temperature expansion and can be repre-
sented as a sum over the random walks with an
amplitude which is proportional to the length of the
paths.

In 1971 Wegner succeeded in constructing a
three-dimensional spin system with local interaction,
whose low temperature expansion coincides with the
random walks with the lengrh amplitude and whose
high temperature expansion coincides with the sum
over the random surfaces with the area amplitude. In
this natural way he has found the gauge spin Hamil-
tonian which is dual to the 3D Ising ferromagnet {14]

3D _ _
Hgauge -

Y. oooo. (2b)

plaquettes

One motivation for the study of spin systems (1) is
that they can help one to understand the dynamics of
random surfaces with area action [15-21].

It is an important fact that there exists a dual
representation of the random surfaces on the lattice
with the area law in terms of Ising and Wegner
Hamiltonians (2a) and (2b) [22-26]. Our aim is to
construct a Hamiltonian which is dual to Hoocaric
(1) and to compare these complementary systems
with each other. As we explained, the deep reason
why this construction is possible lies in the enhanced
symmetry of system (1). In the next sections we shall
geometrically construct the system which is dual to
the one defined by Hamiltonian (1).

2. The partition function of system (1) can be
written in the form

Z( B) = Zexp( - BHgaoDnihedric)' (3)
{o}

As it was shown in Refs. [3,4], the low temperature
expansion is extended over all closed surfaces {M}
with the restriction that only an even number of
plaquettes can intersect at any given edge (2r=
0, 2, 4) and that there is only one plaquette at every
given place

z(B) = L exp[—2BA(M)], (4a)
)

where A(M) is the linear-gonihedric action [1,2,5]
which is equal to

A(M)= Z/\i‘jl'ﬂ"‘a,"jL (4b)
(e

where the summation is over all edges (i, j) of M,
and «a;; is the angle between two neighbour pla-
quettes of M in Z* having a common edge {i, j) of
the length A, . It is easy to see that A(M) is
proportional to the linear size of the surface M
[1,2,5] and there are no weights associated with
intersections because we consider the case £ = 0.
Hamiltonian (1) and partition function (3) provide
the representation (4) of the randomly fluctuating
surfaces on the lattice with gonihedric action A(M)
in terms of locally interacting fields-spins [3,4]. To
construct the dual Hamiltonian we should find the
geometrical representation of the high temperature
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expansion of the system (1), (3). For that let us
consider the high temperature representation of (3),

z(B)=Y TI1 chB[1+th B(oooa)]. (5)

(o) plaquettes

Expanding the product and summing over {o’} one
can see that only the terms which contain an even
number of plaquettes at every given vertex produce
a nonzero contribution, therefore

Z(B)=(2¢ch B’V Y (th B)*¥, (6)
{3}

where the summation is extended over all surfaces
{3’} with an even number of plaquettes at any given
vertex. s(2) is the number of plaquettes of %, e.g.
the area of the surface. Open surfaces are allowed. In
the next section we will describe in detail this set of
surfaces {3}, and the concept of group structure on
this set will be introduced.

3. As we have seen, the high temperature expan-
sion (6) of the gonihedric system (1), (3) in 3D is
extended over surfaces { 3} which can be considered
as a collection of plaquettes on a cubic lattice with
the restriction that only an even number of plaquettes
can intersect at any given vertex and that there is no
more than one plaquette at every given place.

Let us attach plaquette variables U, to each pla-
quette P of Z°

U=-1 if PES and Upy=1 if P&3.

(7)

There are twelve plaquettes P incident to every
vertex of the lattice. The constraint on the plaquette
variables U, in every vertex
Il Up=1, (8)

12 plaquettes incident to vertex
uniquely characterizes our set of surfaces { %} in (6).

Now one can introduce the group structure on this
set of surfaces {X} (8). Let us consider two surfaces
3' and 37 and denote their plaquette variables as
U) and U7 respectively. Let us define the group
product of these two surfaces as

Up = USUZ. (9)

According to this definition a given plaquette be-
longs to a group product of two surfaces 3=3'®

=
7= | Z =
) Wé W M

Fig. 1. The elementary *"matchbox’’ surfaces (10a).

32 only if it belongs to exactly one of them: to 3"
orto 32,

One should check that the group product defined
in this way leaves the surfaces in the same class (8).
Indeed if (8) holds for 3' and 3 then it holds for
the surface product %, that is & also has an even
number of plaquettes on every vertex (8). The in-
verse element of 3 coincides with itself. The set of
surfaces {3} (8) finally forms an Abelian group G.

One can show that the whole group G is a
product of the local group G,. This group G, has
four elements — elementary ‘*matchbox’’ surfaces,

€, 8 8y & (10a)
in Fig. 1 and with the multiplication table
8x8x=8n8n=8:8:=¢€,
8x8n= 8> €., (11)

egx,n.s‘ = g)(.'q.s"

which follows from the multiplication law (9) and
the definition of the matchbox surfaces; see Fig. 1.

With the help of G, one can reconstruct any
surface 3 of the set {Z} (8). Indeed any set of
elementary matchbox surfaces e, g,, &,. & (10),
(11) distributed independently over the lattice Z*
describes some allowed surface 3 and any given
surface from {3} (8) can be decomposed into the
product of G,

s=TIg,. (12)
3

This approach allows us to describe the original
surface ¥ in terms of a new independent matchbox
spin variable

Go=1{e(£). g,(£). 8,(£). 8,(£)},  (10b)
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which should be attached to the centers of the cubes
¢ of the original lattice Z>, e.g. to the vertices of the
dual lattice Z*>.

This is what we aimed at: to express the surface
configuration 3 with the constraints (8) in terms of
the independent local variable G;. The group G; is
an Abelian group of the fourth order and therefore
has four one-dimensional irreducible representations

E={1,1,1,1}, R¥x={1,1, -1, -1},
R"={1, -1,1, -1}, R°={1, -1, —1,1},
(13a)

with the orthogonality relations

Y RY(G,)R"(G,)=48"" (L, m=x.m,5s),
G,

gRX(Gf)R"(Gg)R‘(Gg) =4 (13b)

We will use these representations to express alge-
braically the matchbox spin variable G;. The next
step is to express the amplitude of 3 in terms of
these independent variables and to construct the dual
Hamiltonian.

4. In the high temperature expansion (6) the en-
ergy of the surface ¥ is equal to the number of
plaquettes s(X), that is to the area. We would now
like to construct a new system of locally interacting
matchbox spins G, with identical low temperature
expansion. For that we should properly organize the
local interaction of the matchbox spins G;.

The dual Hamiltonian is nonhomogeneous in the
directions x, m, and s and is equal to

Hya = E(H§v§+x+H§.§+n+H§.f+s‘)’ (14)
3

where x, m, and s are unit vectors in the corre-

sponding directions of the dual lattice and

He oy =H(G;. Gy ) = —RX(E)RX(E+x),

He goq=H(Gg, Gy ) = —R'(E)R™(£+m),

Hepo .= H(Gp. Gpo )= —RE(E)R(£+5).
(15)

Here we abreviated G, by simply £, that is R(G,) =
R(£), a notation that should make no difference. The

partition function of the dual system (14), (15) can
be written in the form

Z(pr)= ZCXP(—B*Hdual)- (16)

(G,)

Now we should check that the low temperature
expansion of the dual system (16) indeed coincides
with the high temperature expansion of the original
system (6). We will see that this indeed takes place,
and we can expect that high temperature expansion
of the dual Hamiltonian will provide us with the new
lattice representation of the random surfaces with
gonihedric action. In the next section we will show
that the two systems (1) and (14), (15) are indeed
dual to each other.

5. Let us define the surface of the interface 3 for
the matchbox spins G; in the following way: pla-
quette P belongs to 3 if the product of the neigh-
boring matchbox spins is equal to —1,

P, ,€Z if RX(G,)RX(Gy,)=-1 (17)
and

In the same way we should define P; ;. , and P; ,, ..
These surfaces are of the class {3} (8) because the
plaquette variables U, defined as

Ug g4y =R¥(G)R*(Gp. ).
Ug e+n=R"(G;)R"(G;. ).
Up e+s=R°(G)R* (G, ). (19)

identically resolve the constraints (8). The correspon-
dence between matchbox spin configurations and
surfaces Y is four-to-one, instead of two-to-one in
the case of surfaces of interface of the Ising ferro-
magnet.

By construction the energy of the surface 3 of
matchbox spin interface is equal to its area and
therefore the low temperature expansion of the dual
system (16) indeed coincides with the high tempera-
ture expansion of the original system (6).

6. As the last step in this construction we should
prove that the high temperature expansion of the
dual system (14), (15) is equivalent to the sum over
random surfaces with an amplitude which is propor-
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tional to the linear size of the surface A(M)
and coincides with the low temperature expansion
(4) of (3).

For that let us consider the high temperature
representation of the partition function (16)

* * 3 *
Z(B)= Z H(Ch B") (1 —th B H§,§+X)
(RGe) ¢
X(1—th B He o, )(1—th B™H, (. [).
(20)
Expanding the product we will have terms of the
form

)» I1

{R(¢£)} over pathson Z**

R(¢), (21)

representing the chains of R’s (13) of different
lengths on the lattice Z *>. Let us see which of these
terms are nonzero. Using the relations

RX(£)R¥(£) = R™(£)R(£)
=R (£)R(£) = E,
RX(£)R'(E)R(£) =E, (22)

which hold for the irreducible representations (13),
one can obtain

Y He e He gy = 4R¥(E= X)R¥(E+x),
Y He yHegon= Y He o, =0. (23)
G,

The last two relations tell us that any loop which
contains one turn at a right angle is equal to zero.
We have three extra nonzero elementary vertices

L He gy HegonHe g s = —4RX(E+ X)RW( £+ 7)
G

XR(€é+5s),

L He y e Hepo Heo g eHe g
G

=4RX(E-x)RX(E+x)R (£~ )
XR"'(£+m),
ng—xvc’Hf‘ﬁfo— neHegonHe s (He o
(3

=4R*(&— x)R*(&+Xx)R(£—m)
XRWE+ )R (€~ s)R(£+5) (24)
and all other vertices are equal to zero.

) |
" /]

| -

Fig. 2. (@) The four nonzero vertices of the type (23) and (24),
which are permitted in the construction of the ‘‘skeleton’.
( B) The forbidden vertices.

Thus the high temperature expansion of the dual
system (14), (15) contains only those loops on the
lattice Z** which have only one of those four
nonzero vertices of the type (23) and (24). One can
imagine every term of this expansion as a *‘skeleton’’
constructed by the loops of ‘‘bones’’ restricted by
the constraints (23) and (24). The amplitude is pro-
portional to the total length of these bones. The
partition function therefore has the form

Z( B « ) — E (ﬂ’l B * )A(skeleton)

skeletons
where A(skeleton) is the total length of the bones.

A nontrivial fact consists in the statement that one
can ‘‘dress up’’ these skeletons by plaquettes so that

(25)

Fig. 3. Example of a “*skeleton’’ in the high temperature expan-
sion of the dual system (16).
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bones will appear as the right angle edges of the
surface M. In that case the A(skeleton) becomes
identically equal to A(M) and the summation over
the skeletons reduces to the summation over surfaces
M with linear-gonihedric action A(M). This identi-
fication is possible only because the bones can join
together and form the loops only though the vertices
(23) and (24). So we have

In(th B*) = —28 (26)
and both systems (1) and (13), (14) and (15) are dual
to each other in the same way as the 3D Ising
ferromagnet (2a) is dual to the 3D Wegner gauge
Hamiltonian (2b). They are complementary to each
other in the sense that (2b) describes random sur-
faces with the area law and (14), (15) with the
linear-gonihedric law.

Here the question is raised whether the system
exhibits a phase transition. From the fact that the
energy functional is proportional to the linear size of
the surfaces one can expect that the system will
show a phase transition in the 3D case which should
be of the same nature as in the case of the 2D Ising
ferromagnet.
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