We resolve single-shot polariton condensate polarization dynamics, revealing a high degree of circular polarization persistent up to T=170 K. The statistical analysis of pulse-to-pulse polariton condensate polarization elucidates the stochastic nature of the polarization pinning process, which is strongly dependent on the pump laser intensity and polarization. Our experiments show that by spatial trapping and isolating condensates from their noisy environment it is possible to form strongly spin-polarized polariton condensates at high temperatures, offering a promising route to the realization of polariton spin lattices for quantum simulations.
More information can be found in: Eirini D. Koutsouroubi, Ioannis Vamvasakis, Maria G. Minotaki, Ioannis T. Papadas, Charalampos Drivas, Stelios A. Choulis, Georgios Kopidakis, Stella Kennou, Gerasimos S. Armatas Ni-doped MoS2 modified graphitic carbon nitride layered hetero-nanostructures as highly efficient photocatalysts for environmental remediation, Appl. Catal. B: Environ. 297, 120419 (2021).