Τμήμα Επιστήμης & Μηχανικής Υλικών

Call for Applications for Postgraduate Studies in the Department of Materials Science and Technology of the University of Crete

25 Ιουλίου 2024

The Department of Materials Science and Technology of the University of Crete announces a limited number of postgraduate student positions for the academic year 2024-2025. The offered educational and research activities of the program are:
  • Optoelectronics - Magnetic materials - Nanotechnology,
  • Polymers - Colloids,
  • Theoretical - Computational Materials Science,
  • Synthetic Chemistry of Materials,
  • Biomaterials - Biomolecules.
Deadline for submission of the application and supporting documents for the Postgraduate Program is set for September 2nd, 2024. The interviews will take place on September 9th, 2024 between 9:00 - 13:00.

More Information

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ 2024

25 Ιουλίου 2024

Πρόγραμμα εξεταστικής Σεπτεμβρίου 2024

Παρουσίαση Μεταπτυχιακής Διπλωματικής Εργασίας της κ. Νικάνδρας Παπακώστα

19 Ιουλίου 2024

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ

 ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

 

Τίτλος

«Laser Induced Periodic Surface Structures on Metallic and Semiconductor Surfaces for Hydrogen Production through Alkaline Electrolysis»  

της Νικάνδρας Παπακώστα

μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης

 Επιβλέπων: Παναγιώτης Λουκάκος

 

Παρασκευή 26 Ιουλίου 2024, Ώρα 11:00

H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης

Abstract

The present thesis examines the enhancement of hydrogen production through the fabrication of nanostructured electrodes and their application in alkaline electrolysis. The primary focus is on the Hydrogen Evolution Reaction (HER) and the impact of nanostructured surfaces on improving reaction efficiency.

Νanostructured nickel electrodes were fabricated using ultrashort laser pulses to form periodic surface structures. Additionally, measurements were conducted on nickel electrodes subjected to electrodeposition (ELN) and on iron electrodes. ELN two-step fabrication process was employed to effectively enlarge the electrocatalytic area of the electrodes in an alkaline electrolysis setup. Initially, ultrashort laser pulses were used to nanostructure the electrode surfaces, followed by the electrodeposition of nickel particles. Furthermore, nickel foam (NF) electrodes with increased surface area were explored through the deposition of nickel using the Pulsed Laser Deposition (PLD) technique. High-resolution Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed for structural and morphological characterization of the prepared electrodes.

The efficiency of hydrogen production was assessed using a custom-made electrolysis cell. For laser-nanostructured nickel electrodes, the hydrogen production efficiency increased by a factor of 3.7. In contrast, electrodeposited-laser-nanostructured nickel electrodes (ELN) showed an enhancement factor of 4.5, and laser-nanostructured iron electrodes exhibited a factor of 2. These enhancements were corroborated by current-time measurements during electrolysis.

Nickel foam electrodes decorated with nickel nanoparticles at various deposited thicknesses (using PLD) were also investigated for their HER performance. The electrodes exhibited significantly increased HER activity, attributed to the enlarged electrochemically active surface from the laser-induced periodic surface nanostructures. The structural and morphological characteristics were analyzed using FE-SEM, XRD, and XPS. The optimal deposition thickness was determined to be 300 nm. The NF electrode decorated with 300 nm Ni nanoparticles (Ni/NF 300) demonstrated superior electrochemical characteristics, with a 15-fold increase in electrochemically active surface area (ECSA) compared to the bare NF electrode.

This study provides a comprehensive analysis of the significant improvements in hydrogen production efficiency achieved through the innovative fabrication of nanostructured electrodes, highlighting the potential for advancing material processing technologies in the green energy sector.

Προσωρινά Αποτελέσματα Αιτήσεων Σίτισης / Στέγασης 2024-25 Σχολών Ηρακλείου- Υποβολή Ενστάσεων

19 Ιουλίου 2024

Προσωρινά Αποτελέσματα Αιτήσεων Σίτισης / Στέγασης 2024-25 Σχολών Ηρακλείου- Υποβολή Ενστάσεων:

https://www.merimna.uoc.gr/index.php/el/anakoinwseis/989-f-m-irakleiou-prosorina-apotelesmatsa-aitiseon-sitisis-stegasis-2024-25-ypovoli-enstaseon Φοιτητική Μέριμνα Σχολών Ηρακλείου

Παρουσίαση Μεταπτυχιακής Διπλωματικής Εργασίας της κ. Σουλτάνας Νικολέττας Πίκου

17 Ιουλίου 2024

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ

 

ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

 Τίτλος

«Optical Characterization of Perovskite Single Crystals»

της Σουλτάνας - Νικολέττας Πίκου

μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης

 Επιβλέπων Καθηγητής: Νικόλαος Πελεκάνος

 Παρασκευή 19 Ιουλίου 2024 Ώρα 15:00

H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης

Abstract In this master thesis the optical properties of Methylammonium Lead Trichloride Single Crystals (MAPbCl3 SCs) of high-optical quality were investigated. The characterizations techniques used were Photoluminescence, Reflectivity and Time resolved Photoluminescence at different powers and temperatures, giving thus a detailed characterization of the crystals. By combining and analyzing the collected data we have reached several conclusions: the main emission peak is Stokes-shifted with respect to the free-exciton line by about 15-20 meV and is due to emission of localized excitons in shallow traps. With increasing temperature, the main emission peak loses intensity by ionization of the localized excitons directly to the electron-hole continuum of states. We show that additional secondary-emission peaks are either part of a cascade trapping process initiated at the localized exciton states of the main emission peak or represent emission at “cubic” inclusions inside the predominantly orthorhombic lattice at low temperatures. Finally, the MAPbCl3 SCs were mechanically polished and the resulting spectra are compared to the pristine ones, while several differentiations were observed.

Πρόσκληση Τελετής Ορκωμοσίας Τμήματος Επιστήμης και Μηχανικής Υλικών

15 Ιουλίου 2024

Η Πρόεδρος του Τμήματος Επιστήμης και Μηχανικής Υλικών Καθηγήτρια κ. Μαρία Βαμβακάκη σας προσκαλεί στην τελετή αποφοίτησης την

Τετάρτη, 24 Ιουλίου 2024 και ώρα 11:00

στο αμφιθέατρο «Πετρίδης», Κτήριο Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών

Δείτε την Πρόσκληση Τελετής Αποφοίτησης.

Παρουσίαση της Διδακτορικής Διατριβής της κ. Γεωργίας- Ιωάννας Κοντογιάννη

12 Ιουλίου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής της

κ. Γεωργίας- Ιωάννας Κοντογιάννη

Επιβλέπουσα Καθηγήτρια: Μαρία Χατζηνικολαΐδου

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

Την Πέμπτη 18 Ιουλίου 2024 και ώρα 12:00 στην αίθουσα Τηλεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής της υποψήφιας διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Γεωργίας- Ιωάννας Κοντογιάννη, με θέμα:

 «Evaluation of the Osteogenic and Osteoclastogenic Potential of Cell Mono- and Co-Cultures in 3D Printed Composite Scaffolds Under Dynamic Conditions»

Περίληψη

Bone tissue engineering (BTE) leverages cutting-edge technologies like 3D printing, specifically fused deposition modeling (FDM), to create scaffolds that mimic the native bone tissue. FDM allows for the creation of complex, patient-specific scaffolds with customizable porosity and mechanical properties. Integrating osteoinductive compounds such as nano-hydroxyapatite (nHA) and Sr-substituted nHA (Sr-nHA) into the scaffolds leads to enhanced osteogenic differentiation and bone regeneration capacity. Conventional in vitro evaluation methods typically use cell mono-culture models with osteoblasts or osteoclasts, which fail to replicate the full interactions of the native bone tissue. Co-culture models involving osteoblasts and osteoclasts provide a more accurate representation of natural bone remodeling. Mechanical stimulation in these models is crucial for recreating the mechanical environment of bone and promoting vital cellular activities. This thesis aimed to develop a growth factor-free co-culture system using human bone marrow mesenchymal stem cells (hBM-MSCs) and human peripheral blood mononuclear cells (hPBMCs) under dynamic conditions to evaluate their osteogenic and osteoclastogenic potential within 3D composite scaffolds made of PLLA/PCL/PHBV and nHA or Sr-nHA. As immunomodulation is critical to predict the pre- or anti-inflammatory responses of cells and the possible outcome of scaffolds prior implantation, the immunomodulatory properties of these scaffolds were investigated using macrophages under dynamic culture conditions. The results showed that Sr-nHA scaffolds enhanced osteogenesis and suppressed osteoclastogenesis in a supplement-free co-culture system. Mechanical stimulation further increased osteogenesis and suppressed osteoclastogenesis, and macrophage polarization indicated a stronger anti-inflammatory response after mechanical stimulation.

Θέση για διδακτορικό στο LAAS-CNRS Laboratory

10 Ιουλίου 2024

Δείτε την ανακοίνωση.

Θέση εργασίας στην εταιρεία APIVITA

10 Ιουλίου 2024

Δείτε πληροφορίες εδώ.

Διαγωνισμός για υποτροφίες κληροδοτημάτων

05 Ιουλίου 2024

Δείτε την προκήρυξη του διαγωνισμού.