Τμήμα Επιστήμης & Μηχανικής Υλικών

Αιτήσεις έκδοσης πτυχίου

17 Ιουνίου 2024

Οι φοιτητές/τριες που πληρούν τις προϋποθέσεις για την απόκτηση πτυχίου πρέπει να καταθέσουν τη σχετική αίτηση στη γραμματεία, ηλεκτρονικά μέσω του ιδρυματικού τους email, το διάστημα: 24/6/2024 – 30/6/2024.

Οι φοιτητές/τριες πρέπει να επιστρέψουν την φοιτητική τους ταυτότητα (σε περίπτωση απώλειας, θα πρέπει να προσκομίσουν δήλωση απώλειας από το gov.gr ή κλοπής από την αστυνομία).

Στην περίπτωση που περιμένετε την βαθμολογία σε μαθήματα, παρακαλούμε όπως σημειώσετε τους κωδικούς των μαθημάτων στο τέλος της αίτησης.

Πρόγραμμα Μεταπτυχιακών Σπουδών (ΠΜΣ) του Τμήματος Βιολογίας του Ε.Κ.Π.Α.: «Βιοπληροφορική-Υπολογιστική Βιολογία»

12 Ιουνίου 2024

Δείτε το σχετικό έγγραφο.

Οι αιτήσεις υποψηφιότητας πραγματοποιούνται μέχρι τη Δευτέρα 24/06/2024.

Υποτροφίες ιταλικού κράτους σε Έλληνες πολίτες

12 Ιουνίου 2024

Το ιταλικό κράτος χορηγεί υποτροφίες σε Έλληνες πολίτες για την ολοκλήρωση προγραμμάτων σπουδών, έρευνας και κατάρτισης σε ιταλικά εκπαιδευτικά ιδρύματα κατά το ακαδημαϊκό έτος 2024- 2025.

Οι αιτήσεις γίνονται ηλεκτρονικά στην ιστοσελίδα https://studyinitaly.esteri.it/

Η προθεσμία κατάθεσης των αιτήσεων είναι η 14η Ιουνίου 2024 , και ώρα 14:00 (τοπική Ιταλίας).

Παρουσίαση της Διδακτορικής Διατριβής του κ. Κωνσταντίνου Λουκέλη

12 Ιουνίου 2024

Invitation to a Public Presentation of his Doctoral Thesis

Mr. Konstantinou Loukelis

Supervising Professor: Maria Chatzinikolaidou

(According to article 95, par. 3 of Law 4957/2022, Official Gazette 141 vol. A/21.7.2022)

On Wednesday, June 19, 2024 at 12:00 in the E-Learning room E130 of the Department of Mathematics and Applied Mathematics of the University of Crete, there will be a public presentation and support of the Doctoral Thesis of the PhD candidate of the Department of Materials Science and Engineering, Mr. Konstantinos Loukelis, on the subject :

«Fabrication of Electrospun and 3D Bioprinted Scaffolds for Bone Tissue Engineering Using Natural and Synthetic Biomaterials»

   

Abstract

Bone tissue engineering (BTE) is a broad research field that focuses on the use of biomaterial-based platforms combined with regeneration competent cell types and biochemical stimulants such as growth factors towards the fabrication of scaffolds and constructs that can restore, improve, or regenerate bone tissues. These biomaterial-based scaffolds should have a biocompatible character, controllable degradation rate, low immunogenicity, and mechanical attributes that are equivalent to those met in the native bone. State of the art biomaterials processing techniques such as electrospinning and 3D bioprinting have enabled the production of such scaffolds of varying 2D or 3D dimensionality, with topological and chemical structure that closely mimics that of bone tissue. The main objective of this thesis was the development of innovative bone regeneration promoting scaffolds and constructs based on the combination of two water soluble polymers, gellan gum (GG) and polyvinyl alcohol (PVA), via the state of the art technologies of electrospinning and 3D bioprinting. Through optimization of biomaterials composition, we produced stable GG:PVA nanofibrous scaffolds of various concentration ratios and verified that increased GG concentration and thermal treatment of scaffolds led to significantly reduced degradation rates, matching those of flat bones, while all compositions showed excellent osteogenic responses in the presence of pre-osteoblastic cells. We then biofabricated 3D bioprinted constructs, containing PVA:GG at different ratios, with and without the implementation of nano-hydroxyapatite (nHA), an osteogenic inorganic material present in human bone, and examined their biomechanical responses. It was corroborated that lower GG:PVA ratio compositions presented enhanced printability and cell viability than the stiffer counterparts, while the presence of nHA resulted in significantly enhanced printing fidelity and osteogenic capacity. Based on the optimization of the GG:PVA bioprinting conditions, we bioprinted constructs with human adipose derived stem cells (ADSCs), by incorporating zinc substituted mesoporous bioactive glasses (Zn-MBGs) in the same polymeric matrix, and observed excellent osteogenesis and chondrogenesis related cellular responses showcasing promising aspects for further use of these composite bioinks as potential personalized human osteochondral implants.

 

Παρουσίαση Διδακτορικής Διατριβής κ. Κωνσταντίνου Μαυράκη

07 Ιουνίου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του

κ. Κωνσταντίνου Μαυράκη

Επιβλέπων: Ιωάννης Ζαχαράκης

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

Την Τρίτη 11 Ιουνίου 2024 και ώρα 14:00

στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Κωνσταντίνου Μαυράκη, με θέμα:

«Development of a Multiparametric Label-Free Imaging System for the Early Diagnosis of Neurodegenerative Disorders through the Ocular Cavity»

 

Περίληψη

“In this novel imaging system, we have combined three non-invasive and label-free imaging techniques: Optoacoustic microscopy (OAM) , non-linear microscopy (NLM) and Stimulated Raman Scattering (SRS) microscopy. OAM exhibits resolution comparable to that of optical microscopy, but can penetrate deeper into high-scattering tissue. The increased possibilities stem from the fundamental scattering difference between light and sound, which constitute the signal for optical microscopy and OAM, respectively. NLM includes two photon excitation fluorescence (TPEF) and Second Harmonic Generation (SHG). OAM, TPEF, SHG and SRS are combined complementary and thus reveal a wide range of discrete and non overlapping information. TPEF presents crisp contrast between bio-molecules that possess different excitation or emission spectra. SHG can provide information about biological structures such as lipid depositions while OAM pinpoints photon absorbing molecules with non-radiative relaxation. SRS imaging provides chemical information with high specificity allowing molecular pattern recognition inside tissues and their association with diseases and pathological conditions. Using these techniques, even sensitive and unreachable structures like the retina and the ocular cavity can be investigated with high resolution. The nerve fibers in the ocular cavity are essentially an extension of the central nervous system and since several neurodegenerative disorders present symptoms in the cavity, they could be diagnosed before the manifestation of conventional symptoms. The presence of possible bio-markers was investigated with TPEF, SHG and OAM in retina samples from mouse models of Alzheimer's disease."

Ενημέρωση υποψηφίων μαθητών / μαθητριών για το Πανεπιστήμιο Κρήτης | “Γιατί να σπουδάσω στο Πανεπιστήμιο Κρήτης”

06 Ιουνίου 2024

Δείτε το σχετικό σύνδεσμο: https://visit.uoc.gr/  

Παρουσίαση Διδακτορικής Διατριβής κ. Ευάγγελου Ανδρέου

06 Ιουνίου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του

κ. Ευάγγελου Ανδρέου

Επιβλέπων Καθηγητής: Γεράσιμος Αρματάς

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

Την Πέμπτη 13 Ιουνίου 2024 και ώρα 10:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Ευάγγελου Ανδρέου, με θέμα:

«Porous Mesoscopic Assemblies of Spinel Chalcogenide and Transition Metal Phosphide Nanoparticles for Photocatalytic Energy Conversion Applications»

Περίληψη

The persistent rise in fossil fuel consumption, driven by the need to satisfy current energy demands, poses a significant environmental hazard, primarily due to the substantial emissions of hazardous gases into the atmosphere. While it is evident that renewable energy sources must replace a significant portion of fossil fuels, existing renewable energy production methods often lack efficiency and still present environmental challenges. Photocatalytic water splitting for hydrogen production stands out as a low-cost technique, offering a high solar to chemical conversion efficiency while emitting zero hazardous gases. Over the last few decades, the research community has explored various photocatalysts, including metal oxides, chalcogenides, nitrides, and more. Despite considerable progress in the development of photocatalytic materials, current synthetic methods often fail to provide precise control over electrochemical properties, morphology, and size of particles, leading to subpar photocatalytic performance.

In this dissertation, we introduce a new, cost-effective and environmentally friendly synthetic protocol for fabricating mesoporous networks of interconnected thiospinel (MIn2S4, M = Zn, Cd) nanocrystals, serving as versatile building blocks. This synthetic approach provides the advantage of adjusting the size of the constituent inorganic nanocrystals, offering significant benefits for photocatalytic energy conversion applications. Such a controllable synthesis enables precise engineering of the optical and electronic properties of the resulting photocatalysts. Namely, employing a straightforward polymer-templated self-assembly process, the thiospinel nanocrystals are organized into three-dimensional (3D) mesoporous networks with large internal surface area and we-defined pores. This structural arrangement leads to improved charge transfer kinetics and better intraparticle diffusion of the electrolyte. Given their advantageous characteristics, the mesoporous ensembles were investigated as potential photocatalysts for the water splitting reaction towards hydrogen evolution. Furthermore, by carefully selecting suitable co-catalysts such as Ni2P, Co2P, and β-Ni(OH)2, we uncovered their significant impact on the photochemical properties of the resulting composite structures. Utilizing a combination of spectroscopic and (photo)electrochemical techniques, we identified that the formation of the thiospinel/metal phosphide/hydroxide nano-heterojunctions significantly enhances the separation and transfer ability of the photogenerated charge carriers, leading to high photocatalytic stability and activities. Notably, these improvements exceed those reported for previously studied high-performance multicomponent thiospinel-based photocatalytic systems. Overall, this research presents a novel synthetic perspective for the rational design of photocatalysts and advances our understanding of next generation photocatalysts for clean energy conversion applications. By shedding light on key aspects of inorganic synthetic chemistry, interface engineering and photochemical reactions, the findings of this work make a significant contribution to the broader research endeavor focused on the development of sustainable energy technologies.

Θέσεις στα μεταπτυχιακά προγράμματα του Τμ. Χημείας, ΠΚ

05 Ιουνίου 2024

Δείτε την Προκήρυξη.

ΒΡΑΒΕΙΟ ΕΞΑΙΡΕΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΗΣ ΔΙΔΑΣΚΑΛΙΑΣ εις μνήμην Β. Ξανθόπουλου και Στ. Πνευματικού

05 Ιουνίου 2024

Δείτε την Προκήρυξη, το ενημερωτικό μονόλεπτο βίντεο και πληροφορίες για το Βραβείο.

Παρουσίαση Διδακτορικής Διατριβής κ. Μιχαήλ Μυλωνάκη

30 Μαΐου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του

κ. Μιχαήλ Μυλωνάκη

Επιβλέπων: Ιωάννης Ζαχαράκης

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

 

Την Πέμπτη 6 Ιουνίου 2024 και ώρα 10:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Μιχαήλ Μυλωνάκη, με θέμα:

«Wavefront Shaping for Microscopic Imaging of Biological Samples»

 

Περίληψη

“Imaging of biological samples is one of the driving application fields of optical microscopy. Although several other imaging techniques have been developed the simplicity, the effectiveness and the non-invasive nature of optical microscopy are the key factors of its widespread use in Biology.

An important limiting factor for optical microscopy is the scattering of light as it propagates through biological tissue. The inherent random variations of the optical properties, lead to a diffusion dominated propagation that drastically limits the effective imaging range down to 1 mm. On the other hand, recent advances in the spatial modulation of the light beam that illuminates the sample combined with analysis of the detected light distribution have opened the way to beat the diffusion limit.

Τhis PhD thesis was focused on leveraging the concept of the 'opaque lens' by utilizing engineered disorder in photonic structures. This involved developing novel scattering media and their integration with wavefront shaping into imaging modalities. Using this approach, we have reached to the development of a fully functional fluorescence microscope that, in several aspects, outperforms current instrumentation capable of performing in vivo fluorescence microscopy."