Τμήμα Επιστήμης & Μηχανικής Υλικών

Πρόσληψη εντεταλμένων διδασκόντων με σύμβαση εργασίας Ιδιωτικού Δικαίου Ορισμένου Χρόνου στο Τμήμα Επιστήμης και Μηχανικής Υλικών

19 Δεκεμβρίου 2024

Δείτε τις προκηρύξεις για τα μαθήματα «Τεχνητή Νοημοσύνη στην Επιστήμη Υλικών» και «Φυσική Πολυμερών».

Εισαγωγή πτυχιούχων της ΣΘΕΤΕ στο πρόγραμμα παιδαγωγικής και διδακτικής επάρκειας ακαδ. έτους 2024-25 (εαρινό εξάμηνο)

18 Δεκεμβρίου 2024

Δείτε τη σχετική προκήρυξη.

Κατάθεση αιτήσεων και δικαιολογητικών μέχρι: 19 /01/ 2025.

Παρουσίαση μεταπτυχιακής εργασίας του κ. Β. Τσάμπαλλα

16 Δεκεμβρίου 2024

ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Τίτλος

«Synthesis and Functionalization of Monodisperse Lignin Nanoparticles»  

του Βασιλείου Τσάμπαλλα

μεταπτυχιακού φοιτητή του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης

Επιβλέπουσα Καθηγήτρια: Μαρία Βαμβακάκη

Τρίτη 17 Δεκεμβρίου 2024    Ώρα 16:00

  H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης  

Abstract

«Lignin, an abundant biopolymer, is a promising yet underutilized resource in the development of sustainable materials. The study aims to overcome challenges associated with lignin's heterogeneous structure by synthesizing monodisperse lignin nanoparticles through a controlled and reproducible process. The synthesis methodology involves precision engineering to achieve uniform particle size distribution, ensuring enhanced properties and reproducibility. Furthermore, the research explores novel avenues for the functionalization of these lignin nanoparticles, imparting them with tailored properties suitable for diverse applications. The functionalization process involves the incorporation of specific chemical moieties, enabling improved compatibility with various matrices and facilitating the design of advanced materials. The thesis seeks to contribute to the expanding field of green materials by providing a comprehensive understanding of the synthesis and functionalization of monodisperse lignin nanoparticles. The resulting nanoparticles hold promise for applications in biocompatible materials, drug delivery systems, and environmentally friendly composites. This research addresses the challenges in lignin utilization and opens new avenues for sustainable materials with diverse functionalities, paving the way for an eco-friendly and resource-efficient future».

Παρουσίαση Μεταπτυχιακής εργασίας του κ. Ιωάννη Σαμψών

16 Δεκεμβρίου 2024

ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

του Ιωάννη Σαμψών

μεταπτυχιακού φοιτητή του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης

Τίτλος

«Liquid-Liquid Phase Separation: From Polyelectrolytes to Proteins Using Quantitative Phase Microscopy and Dynamic Light Scattering»  

Επιβλέπουσα: Εμμανουέλα Φιλιππίδη

Τετάρτη 18 Δεκεμβρίου 2024 Ώρα 14:30

H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης

Abstract

Understanding the thermodynamic stability of materials allows the prediction of material properties and provides information about energy and entropy changes involved in phase transitions. This thesis focuses on the experimental study of liquid-liquid phase separation of intrinsically disordered proteins and oppositely charged polyelectrolytes, in an effort to provide insights and quantitative thermodynamic measurements relevant to biology.

In particular, this work shows the construction of phase diagrams using quantitative phase microscopy for the disordered protein PGL-3 which participates in condensate formation in the C. elegans embryo and readily undergoes liquid-liquid phase separation in vitro. The control parameters explored are temperature and salt. In addition, first steps are undertaken to examine the multimeric state of the protein upon increasing its concentration. However, since proteins are incredibly complex as they comprise structured and unstructured domains, hydrophobic, hydrophilic, polar and charged amino acids, a parallel study of the coacervation between an oppositely-charged pair of a strong and weak polyelectrolytes was launched. Results from both systems will be presented and similarities and differences will be discussed.

Παρουσίαση διδακτορικής διατριβής του κ. Αλέξανδρου Δελτσίδη

13 Δεκεμβρίου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του

κ. Αλέξανδρου Δελτσίδη

Επιβλέπων: κ. Λάππας Αλέξανδρος, Διευθυντής Ερευνών,  

Ινστιτούτου Ηλεκτρονικής Δομής και Λέιζερ του Ιδρύματος Τεχνολογίας Έρευνας, Ηράκλειο Κρήτης

 

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

 

Την Παρασκευή 20 Δεκεμβρίου 2024 και ώρα 9:30 στην αίθουσα Τηλεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορα του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Αλέξανδρου Δελτσίδη, με θέμα:

«Electron Correlations in Layered Metal Chalcogenides: Structure and Physical Properties»

Abstract

Intercalation of layered iron chalcogenide superconductors with guest species gives access to a gallery of layered phases with enhanced superconducting properties. In these systems, emerging empirical pictures imply a strong relation of the average and local structure with the magnitude of the superconducting transition temperature . Exploring the puzzling saturation of at large interlayer separations, , (average structure), and the role of the geometry of the basic building FeSe4 block (local structure) in tuning the strength of electronic correlations and spin dynamics in these systems, offers an avenue to parameterize conditions that facilitate high . This thesis focuses on variant phases of the Lix­(C5H5­N)yFe2-zSe2 system with very large .

High-throughput, time-resolved X-ray total scattering, has been employed to establish conditions that enable the synthesis of phase pure product and simultaneously identify the different length-scales that emerge during the growth of the Lix(C5H5N)yFe2-zSe2 expanded lattice phase. In-situ pair distribution function analysis revealed local distortions, involving swollen FeSe4 edge-sharing units, as a consequence of the electron-donating moieties being accommodated in the interlayer space. These non-trivial local distortions were further explored by element-specific (Fe and Se K-edge) X-ray absorption spectroscopy as a function of temperature and the Li content. The work found progressive softening and stretching of the electronically active Fe-layer with elevated Li content—effects that were associated with the presence of Fe-site vacancies. Annealing Lix­(C5H5­N)yFe2-zSe2 forms a phase with reduced and somewhat lower —an outcome of the modified metal-ligand environment due to reduced doping level. Local structure insights suggest that empirical local structure metrics for growth may become less relevant when the layers are spaced far away. Instead, other parameters such as electron doping level may come into play to leverage high .

Different aspects of the magnetism of these systems are imprinted in two different time scales. These were probed with X-ray emission spectroscopy and inelastic neutron scattering. The Fe Kβ emission spectra shed light on the evolution of instantaneous spin dynamics (10-15 s) and found evidence of strong localized magnetism in the normal state which, due to strong quantum fluctuations, is severely quenched in the superconducting state. However, Hund's coupling appears to play a key role in mediating the development of local moments when cooling towards the correlated state. Inelastic neutron spectra probed the correlated spin dynamics (10- 12 s) and failed to identify strong resonant signals in the superconducting state—akin to similar unconventional systems—enquiring about the role of electronic correlation strength and doping in dampening the intensity of such signals. Insights on the spin-dynamics suggest that intercalation brings about large spin disorder in the normal state, raising questions about the nature of unconventional pairing interactions in systems with very large .

The outcomes highlight that intercalation by insertion of molecular donors in-between the electronically active iron-layers is a viable tool to develop and design the properties of high- Fe-chalcogenides. The sensitive response of their structure on carrier doping points that when interlayer separation is enhanced, reduces electronic screening that aligns with the concept of Hund’s coupling that is central in modifying the pairing strength and further optimizations of superconductivity.

Νέες Θέσεις για Διδακτορικές Σπουδές με Υποτροφία στο Τμήμα Χημικών Μηχανικών του Πανεπιστημίου Πατρών

13 Δεκεμβρίου 2024

Δείτε σχετικά το σύνδεσμο.

Call for postgraduate positions Spring Semester 2024-2025

13 Δεκεμβρίου 2024

The Department of Materials Science and Engineering of the University of Crete announces a limited number of postgraduate student positions for enrolment in the spring semester of the academic year 2024-2025.

The aim of the Postgraduate Program in Materials Science and Engineering of the Materials Science and Engineering Department is to prepare MSc students for excellent career prospects in the rapidly growing interdisciplinary field of Materials Science and Engineering. The educational and research activities of the program provide an integrated approach and in-depth training, with emphasis on conducting innovative research in the following cutting-edge fields of Materials Science Engineering and Technology:

  • Optoelectronics – Magnetic materials – Nanotechnology
  • Polymers – Colloids
  • Theoretical – Computational Materials Science
  • Synthetic Chemistry of Materials
  • Biomaterials – Biomolecules

Successful completion of the Postgraduate Program leads to a Postgraduate Diploma (MSc) after 4 semesters of study that include the mandatory attendance of courses and the preparation and writing of a Master’s Thesis. The program is in English and requires full-time participation. As part of their training, postgraduate students assist in the instruction of undergraduate courses.

Graduates of the first cycle of studies of Greek universities or similar institutions abroad have the right to apply for the program. Knowledge of English is required. There are no tuition fees for students coming from the European Economic Area (EEA). For students coming from countries outside of the EEA, the program’s total tuition fees are 2000 Euro. 

The academic criteria that are taken into account for the selection are defined in the Postgraduate Studies Regulations. They include the undergraduate degree, grades in courses related to the subject of the program, the performance in a diploma thesis, if provided in the first cycle of studies, as well as the relevant research or professional activity of the candidate.


Necessary supporting documents
(submitted exclusively in electronic form through the website https://postgrad.cict.uoc.gr )

  • Application
  • Detailed CV
  • Report of interests
  • Copy of degree
  • Diploma supplement
  • Up to three (3) letters of recommendation
  • Any other document the candidate considers to substantiate scientific excellence and quality
  • Certificate of a good knowledge of the English language (B2 level and above)

Please use the form templates found here: https://mscs.uoc.gr/dmst/?page_id=850

The application must include ane-mail account from which you will be informed about the progress of your application.

Letters of recommendation will be sent directly by the authors to the postgraduate secretariat.

Deadline for submission of the application and supporting documents for the Postgraduate Program is set for January 17th, 2025. The interviews will take place on January 27th, 2025 between 10:00 – 13:00. There is the possibility of a video conference for candidates living outside Crete.

  Applications and supporting documents are submitted exclusively online via the website https://postgrad.cict.uoc.gr. Candidates should a) create a user account, b) process their application by filling in the corresponding fields and uploading files for the remaining data, and c) make the final submission before the deadline.

For more information, please contact the Secretariat of the Department of Materials Science and Engineering:

Mr. Ch. Stratigis: tel. +30 2810-394272, stratigis@materials.uoc.gr,

and Ms Sygelaki Fotini: tel. +30 2810394270, fsygelaki@materials.uoc.gr,

or the Director of Postgraduate Studies, Assoc. Prof. D. Papazoglou: postgrad_chair@materials.uoc.gr.

Μετεγγραφές στο ΤΕΜΥ 2024

11 Δεκεμβρίου 2024

Καλούνται οι φοιτητές των οποίων εγκρίθηκε από το Υπουργείο Παιδείας, Θρησκευμάτων και Αθλητισμού η αίτηση μετεγγραφής στο Τμήμα Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης, να αποστείλουν ηλεκτρονικά (secretariat@materials.uoc.gr) ή να προσκομίσουν στη Γραμματεία του Τμήματος από την Τετάρτη 12/12/2024 έως και την Παρασκευή 20/12/2024 τα παρακάτω δικαιολογητικά για τον έλεγχο της μετεγγραφής κατά την ισχύουσα νομοθεσία. Θα πρέπει οπωσδήποτε να αποστείλουν:  

  • Την εκτύπωση της οριστικοποιημένης ηλεκτρονικής αίτησης μετεγγραφής που φέρει αριθμό πρωτοκόλλου 
  • Τα δικαιολογητικά που αναφέρονται στην αίτηση, κατά περίπτωση.
  • Βεβαίωση Εγγραφής από το Τμήμα προέλευσης στην οποία να αναφέρεται το εξάμηνο φοίτησης

  Μετά τον έλεγχο των δικαιολογητικών, οι φοιτητές θα λάβουν με e-mail από την Γραμματεία  επιβεβαίωση της εγκυρότητας της μετεγγραφής τους και θα τους δοθεί εύλογο χρονικό διάστημα για την προσκόμιση της βεβαίωσης διαγραφής από το Τμήμα προέλευσης, προκειμένου να ολοκληρωθεί η εγγραφή τους στο Τμήμα μας.  Σε καμία περίπτωση δεν πρέπει να προχωρήσουν στην διαγραφή από το Τμήμα προέλευσης αν δεν λάβουν την επιβεβαίωση εγκυρότητας της μετεγγραφής τους από τη Γραμματεία μας.   Στο παρακάτω αρχείο μπορείτε να δείτε τη σχετική εγκύκλιο του Υπουργείου.   Συνημμένο αρχείο: Εγκύκλιος δικαιολογητικών

ΠΡΟΣΚΛΗΣΗ ΑΠΟΚΤΗΣΗΣ ΑΚΑΔΗΜΑΪΚΗΣ ΕΜΠΕΙΡΙΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Ακ. Έτους 2024-25_ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ Π.Κ.

10 Δεκεμβρίου 2024

Δείτε τη σχετική Πρόσκληση.

Παρουσίαση διδακτορικής διατριβής της κ. Λέιλας Ζουρίδη

10 Δεκεμβρίου 2024

Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής

της κ. Λέιλας Ζουρίδη

Επιβλέπων Καθηγητής: Βασίλειος Μπίνας

(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)

 

Την Πέμπτη 19 Δεκεμβρίου 2024 και ώρα 9:00 στην αίθουσα Τηλεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής της υποψήφιας διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Λέιλας Ζουρίδη, με θέμα:

«Development of perovskite oxides as printable solid oxide cell electrodes»

Abstract The energy transition from fossil fuels to an electrified hydrogen energy economy still faces challenges on the implementation of electrolyzer and fuel electrochemical cells due to complexity of fabrication and materials cost. In this study the investigation of versatile perovskite oxide materials as printed thin-film electrode components for facile manufacturing of solid oxide cells is presented. The implementation of mechanochemical synthesis on the solid-state synthesis of electroceramics directly from salt precursors has been explored for the preparation of easy to handle and abundant titanate and manganite perovskites, followed by the physicochemical characterization of their structural, morphological, elemental, electrical and thermal stability properties in ex-situ and in-situ conditions. The pure perovskite phase was achieved after high temperature annealing solely in the cases where the mechanochemical step was implemented, while other synthetic procedures tested at similar synthetic conditions produced mostly mixed metal oxides, indicating the potential of the solvent-free direct salt precursor mechanochemical synthesis developed in this work. Ink development and study of dispersions based on organic solvents with our synthesized materials was implemented with different processing methods to achieve optimal, inkjet-printable inks, with appropriate shelf-life and print fidelity. The optimized inks were then utilized in an inkjet printing system to study their deposition by altering parameter conditions on the cartridge and platen for consistent drop generation and precision on the deposited patterns. Comparatively, different thick pastes were developed with the perovskite oxides, to be used by two additional additive manufacturing methods, screen printing and direct-ink-writing. Fabrication of electrolyte-supported solid oxide cells was conducted with different designs to explore the extend of applicability of the printing methods. After fabrication of solid oxide cells, the electrochemical evaluation of electrodes on air and hydrogen fuel was conducted illustrating their potential as electrodes for reversible solid oxide cells.