Τμήμα Επιστήμης & Μηχανικής Υλικών
19 Σεπτεμβρίου 2024
To enroll at the postgraduate program in “Materials Science and Engineering” for the 2024-2025 fall semester candidate graduate students who were accepted in June and September calls must have fulfilled their degree requirements by the end of the registration period (see below). Note that students who were provisionally accepted under the requirement of completing their undergraduate studies can enroll by submitting a certificate of completion.
Course registration period for the fall semester 2024-2025 of the MSc in “Materials Science and Engineering” is from 30/9/2024 to 11/10/2024.
All students are required to have consulted their supervisors (or the Director of Graduate Studies, Associate Professor D. Papazoglou) and have their consent. (Course declaration form is attached).
Courses will start on Monday 30th September 2024.
Course Program: https://www.materials.uoc.gr/en/graduate-course-timetable-winter-2024-amp-ndash-2025/
29 Αυγούστου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Theoretical Investigation of MOFs’ Linker Functionalization for Enhancing Desalination»
της Ηλέκτρας Μανουρά
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Γεράσιμος Αρματάς
Τετάρτη 4 Σεπτεμβρίου 2024,Ώρα 11:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
Water scarcity is a critical issue that affects millions globally. With the increasing population and the escalating impacts of climate change, there is an urgent need for sustainable water treatment solutions. Desalination, plays a pivotal role in addressing this challenge. Our research leverages Metal-Organic Frameworks (MOFs)—highly porous materials composed of metal nodes and organic linkers—to enhance the desalination efficiency. By functionalizing MOF linkers, we improved salt rejection without significantly affecting water permeability, making the desalination process more effective and energy-efficient. We employed a multi-scale computational approach, that can advance the understanding of MOF interactions with water and contaminants, contributing valuable insights to the field of materials science and environmental engineering. Specifically, we conducted extensive ab initio calculations to screen a wide range of functional groups for their binding energy with water and salt ions, using the RI-MP2/def2-TZVPP level of theory [1]. This process led to the creation of a database of substituted benzenes with high salt adsorption potential compared to water. The functional group with optimal selectivity (-PO3H2) was selected for MOF modification and its desalination performance was evaluated through molecular dynamics simulations. It was found that the functionalized MOF reached 100% ion rejection, without significantly affecting water permeability. The results of this research, can guide experimental scientists to design new materials with desired properties and interactions, and facilitate the development of advanced desalination membranes and other water treatment technologies, tailored to specific needs and conditions.
25 Ιουλίου 2024
The Department of Materials Science and Technology of the University of Crete announces a limited number of postgraduate student positions for the academic year 2024-2025. The offered educational and research activities of the program are:19 Ιουλίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Laser Induced Periodic Surface Structures on Metallic and Semiconductor Surfaces for Hydrogen Production through Alkaline Electrolysis»
της Νικάνδρας Παπακώστα
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων: Παναγιώτης Λουκάκος
Παρασκευή 26 Ιουλίου 2024, Ώρα 11:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
The present thesis examines the enhancement of hydrogen production through the fabrication of nanostructured electrodes and their application in alkaline electrolysis. The primary focus is on the Hydrogen Evolution Reaction (HER) and the impact of nanostructured surfaces on improving reaction efficiency.
Νanostructured nickel electrodes were fabricated using ultrashort laser pulses to form periodic surface structures. Additionally, measurements were conducted on nickel electrodes subjected to electrodeposition (ELN) and on iron electrodes. ELN two-step fabrication process was employed to effectively enlarge the electrocatalytic area of the electrodes in an alkaline electrolysis setup. Initially, ultrashort laser pulses were used to nanostructure the electrode surfaces, followed by the electrodeposition of nickel particles. Furthermore, nickel foam (NF) electrodes with increased surface area were explored through the deposition of nickel using the Pulsed Laser Deposition (PLD) technique. High-resolution Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed for structural and morphological characterization of the prepared electrodes.
The efficiency of hydrogen production was assessed using a custom-made electrolysis cell. For laser-nanostructured nickel electrodes, the hydrogen production efficiency increased by a factor of 3.7. In contrast, electrodeposited-laser-nanostructured nickel electrodes (ELN) showed an enhancement factor of 4.5, and laser-nanostructured iron electrodes exhibited a factor of 2. These enhancements were corroborated by current-time measurements during electrolysis.
Nickel foam electrodes decorated with nickel nanoparticles at various deposited thicknesses (using PLD) were also investigated for their HER performance. The electrodes exhibited significantly increased HER activity, attributed to the enlarged electrochemically active surface from the laser-induced periodic surface nanostructures. The structural and morphological characteristics were analyzed using FE-SEM, XRD, and XPS. The optimal deposition thickness was determined to be 300 nm. The NF electrode decorated with 300 nm Ni nanoparticles (Ni/NF 300) demonstrated superior electrochemical characteristics, with a 15-fold increase in electrochemically active surface area (ECSA) compared to the bare NF electrode.
This study provides a comprehensive analysis of the significant improvements in hydrogen production efficiency achieved through the innovative fabrication of nanostructured electrodes, highlighting the potential for advancing material processing technologies in the green energy sector.
17 Ιουλίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Optical Characterization of Perovskite Single Crystals»
της Σουλτάνας - Νικολέττας Πίκου
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Νικόλαος Πελεκάνος
Παρασκευή 19 Ιουλίου 2024 Ώρα 15:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract In this master thesis the optical properties of Methylammonium Lead Trichloride Single Crystals (MAPbCl3 SCs) of high-optical quality were investigated. The characterizations techniques used were Photoluminescence, Reflectivity and Time resolved Photoluminescence at different powers and temperatures, giving thus a detailed characterization of the crystals. By combining and analyzing the collected data we have reached several conclusions: the main emission peak is Stokes-shifted with respect to the free-exciton line by about 15-20 meV and is due to emission of localized excitons in shallow traps. With increasing temperature, the main emission peak loses intensity by ionization of the localized excitons directly to the electron-hole continuum of states. We show that additional secondary-emission peaks are either part of a cascade trapping process initiated at the localized exciton states of the main emission peak or represent emission at “cubic” inclusions inside the predominantly orthorhombic lattice at low temperatures. Finally, the MAPbCl3 SCs were mechanically polished and the resulting spectra are compared to the pristine ones, while several differentiations were observed.15 Ιουλίου 2024
Η Πρόεδρος του Τμήματος Επιστήμης και Μηχανικής Υλικών Καθηγήτρια κ. Μαρία Βαμβακάκη σας προσκαλεί στην τελετή αποφοίτησης την
Τετάρτη, 24 Ιουλίου 2024 και ώρα 11:00
στο αμφιθέατρο «Πετρίδης», Κτήριο Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών
Δείτε την Πρόσκληση Τελετής Αποφοίτησης.
12 Ιουλίου 2024
Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής της
κ. Γεωργίας- Ιωάννας Κοντογιάννη
Επιβλέπουσα Καθηγήτρια: Μαρία Χατζηνικολαΐδου
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Πέμπτη 18 Ιουλίου 2024 και ώρα 12:00 στην αίθουσα Τηλεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής της υποψήφιας διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Γεωργίας- Ιωάννας Κοντογιάννη, με θέμα:
«Evaluation of the Osteogenic and Osteoclastogenic Potential of Cell Mono- and Co-Cultures in 3D Printed Composite Scaffolds Under Dynamic Conditions»
Περίληψη
Bone tissue engineering (BTE) leverages cutting-edge technologies like 3D printing, specifically fused deposition modeling (FDM), to create scaffolds that mimic the native bone tissue. FDM allows for the creation of complex, patient-specific scaffolds with customizable porosity and mechanical properties. Integrating osteoinductive compounds such as nano-hydroxyapatite (nHA) and Sr-substituted nHA (Sr-nHA) into the scaffolds leads to enhanced osteogenic differentiation and bone regeneration capacity. Conventional in vitro evaluation methods typically use cell mono-culture models with osteoblasts or osteoclasts, which fail to replicate the full interactions of the native bone tissue. Co-culture models involving osteoblasts and osteoclasts provide a more accurate representation of natural bone remodeling. Mechanical stimulation in these models is crucial for recreating the mechanical environment of bone and promoting vital cellular activities. This thesis aimed to develop a growth factor-free co-culture system using human bone marrow mesenchymal stem cells (hBM-MSCs) and human peripheral blood mononuclear cells (hPBMCs) under dynamic conditions to evaluate their osteogenic and osteoclastogenic potential within 3D composite scaffolds made of PLLA/PCL/PHBV and nHA or Sr-nHA. As immunomodulation is critical to predict the pre- or anti-inflammatory responses of cells and the possible outcome of scaffolds prior implantation, the immunomodulatory properties of these scaffolds were investigated using macrophages under dynamic culture conditions. The results showed that Sr-nHA scaffolds enhanced osteogenesis and suppressed osteoclastogenesis in a supplement-free co-culture system. Mechanical stimulation further increased osteogenesis and suppressed osteoclastogenesis, and macrophage polarization indicated a stronger anti-inflammatory response after mechanical stimulation.
04 Ιουλίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Growth of TiO2, NiO Thin Films for Gas Sensing Applications»
του Αλέξανδρου Παπαδάκη
μεταπτυχιακού φοιτητή του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Νικόλαος Πελεκάνος
Πέμπτη 11 Ιουλίου 2024, Ώρα 12:30
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
The scope of this Master Thesis work was to fabricate TiO2 and NiO-based sensors in order to detect hazardous gases, such as Ammonia (NH3) and Nitric Oxide (NO), as well as to study the interactions between the single gas molecules and the surface of the thin film. In addition, the sensors were tested against energy related gases, such as Hydrogen (H2) and Methane (CH4), due to the strong interest on the former as green fuel, while the latter one is the main ingredient of natural gas. More specifically TiO2 showed significant response in Hydrogen as well as in Methane gases at elevated temperatures of about 350°C. Additionally, NiO gas sensors were sensitive to Hydrogen, Nitric Oxide and Methane gases. NiO showed results at elevated temperatures and room temperature as well. Finally, the Metal Oxide gas Sensors (MOS) were optically and structurally characterized.01 Ιουλίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Colloidal Gels Tuned by Magnetic Field»
του Εμμανουήλ Μαθιουδάκη
μεταπτυχιακού φοιτητή του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Γεώργιος Πετεκίδης
Τρίτη 2 Ιουλίου 2024, Ώρα 12:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
Colloidal gels are materials ubiquitous in everyday life. They are defined as functional materials that may exhibit solid-like properties through the formation of space spanning networks with rich structural and rheological properties. Magnetorheological Fluids (MRFs) are a class of smart colloidal materials, with a variety of applications, such as shock absorbers, that upon the application of an external magnetic field, exhibit a rapid and reversible transition from liquids to soft yield stress solids with columnar and ring structures being formed. Their mechanical properties and microstructure can be studied with the use of rheology and optical microscopy/imaging or scattering. Fumed silica particles have been used in many industry applications such as raw materials for the effects of purity composition in optical fibers, in high strength concrete, as rheological additives for anti-sedimentation, thixotropic and thickening agents in agrochemicals, battery gels, drilling fluids, foods etch, and as filler material for scratch resistance, low thermal conductivity, reinforcement in sealants coatings, insulation and many more. They function as effective thickening and thixotropic agents that can stabilize and modify the rheological response of a variety of systems, while based on the grade of fumed silica, hydrophobic or hydrophilic, and the chemical nature of the solvent, polar or non-polar, can form stable sols or gels with space-filling network and varying mechanical properties. By combining these two classes of materials we create a colloidal gel mixture to probe the rheological behavior and structure formation of the magnetic particles inside the fumed silica suspensions (gels or sols). Moreover, the mechanical properties of the fumed silica suspensions can also be tuned using both mechanical and magnetic stimuli or their combination. Utilizing a powerful combination of in-situ Rheometry and optical imaging, via a rheo-imaging setup, we can apply external magnetic fields and follow the rheological response and some of the microstructural changes of these mixtures under an external magnetic field.
25 Ιουνίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Structure and Dynamic Properties of Collagen-Based Hydrogels»
της Κωνσταντίνας Λυρώνη
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Δημήτριος Βλασσόπουλος
Πέμπτη 27 Ιουνίου 2024
Ώρα 11:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
Collagen type I, the most abundant protein in mammals, due to the unique mechanochemical properties that exhibits, is widely used in the production of porous scaffolds via lyophilization for biomedical applications. To optimize its utilization, a deeper understanding of the link between structure and rheological properties of collagen suspensions is necessary. In this work, we explored the morphology of fibrillar collagen suspensions via confocal fluorescence microscopy and determined the characteristics of the networks such as the mesh size and the fiber diameter. For the investigation of their rheological response, because of the size of the fibers, we tested both cone-plate and parallel plate geometries and examined the possibility of confinement effects, as well as the effects of loading. Furthermore, we studied the effects of the loading history of the collagen suspension. The experimental results reveal shear thinning and a small yield stress, as well as the presence of wall slip. The latter is evidence in the preliminary data of Particle Image Velocimetry (PIV). Analysis of the viscoelastic properties of the suspension yielded a mesh size in the entangled regime, using different models that have been used to describe similar systems. The agreement with the confocal microscopy data is encouraging.