Τμήμα Επιστήμης & Μηχανικής Υλικών
11 Οκτωβρίου 2023
Δείτε τη σχετική ανακοίνωση στη σελίδα της Φοιτητικής Μέριμνας.11 Οκτωβρίου 2023
In view of the forthcoming start of the HORIZON-EIC-2023-PATHFINDEROPEN-01-01 Project Glas-A-Fuels, entitled “Single-Atom Photocatalysts Enhanced by a Self-Powered Photonic Glass Reactor to Produce Advanced Biofuels”, we are looking to recruit a PhD student for the duration of four years. The experimental work will be implemented in the ULMNP laboratory of IESL-FORTH, while the provisional starting date would be February or March 2024. The main research activities will involve the synthesis, patterning, and characterization of functional composite inorganic oxide glasses.
The applicants are kindly asked to provide their CV to Dr. I. Konidakis (ikonid@iesl.forth.gr) and Dr. E. Stratakis (stratak@iesl.forth.gr).
Requirements:
B.Sc. and M.Sc. in physical sciences (Chemistry, Physics, Materials Science).
Useful links
FORTH: https://www.forth.gr/
IESL-FORTH: http://www.iesl.forth.gr/
ULMNP: http://stratakislab.iesl.forth.gr/ and https://www.iesl.forth.gr/en/research/ULNMP-Group
11 Οκτωβρίου 2023
Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του
κ. Γεωργίου Βαϊλάκη
Επιβλέπων Καθηγητής: Γεώργιος Κοπιδάκης
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Πέμπτη 19 Οκτωβρίου 2023 και ώρα 10:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Τεχνολογίας Υλικών κ. Γεωργίου Βαϊλάκη , με θέμα:
«Theoretical Study of Two-Dimensional Nanostructures.»
Περίληψη
“Intensive research efforts on two-dimensional (2D) materials of atomic thickness uncover interesting phenomena, exciting physics, and new possibilities for technological innovation. 2D materials show great promise in electronics, optoelectronics, sensing, catalysis, clean energy and environment applications. Following semimetal graphene (Gr), focus is on other stable 2D materials with varying electronic properties such as insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDs), and superconducting iron selenide (Fe2Se2). The electronic properties of these materials are strongly affected by strain, nanostructuring, structural and chemical defects, and disorder. Layer by layer stacking of 2D materials gives rise to van der Waals heterostructures (VDWHs) of nanometer thickness and clean interfaces. Superconductivity of twisted bilayer Gr at the magic angle, interlayer excitons in TMD heterostructures and optoelectronic properties of Gr/TMD heterostructures, are examples, among others, where VDWHs significantly differ from their monolayer (ML) constituents. 2D nanostructures often exhibit extraordinary properties and present novel challenges for theory. Theoretical models can answer emerging fundamental questions and identify candidate materials with properties tailored for specific applications from all the range of unique 2D nanostructures. First-principles calculations, which provide solution to the quantum problem and are the basis for atomic-scale understanding of materials, become challenging when deviations from periodicity are strong.
In this work, we perform density functional theory (DFT) calculations for the atomic and electronic structure of defected 2D nanostructures, heterostructures consisting of combinations of TMD MLs, Gr, and other materials. Due to the large size of the simulation cells required, DFT calculations are very demanding and the results need careful interpretation using non-trivial computational tools. We present in detail the methods we develop for the construction of optimized simulation cells and for unfolding the electronic band structures from their Brillouin Zone (BZ). The effective band structure (EBS) produced allows for a clear and direct comparison between electronic properties of 2D defected nanostructures and heterostructures with their pristine or constituent MLs.
Applying our methodology to Gr/TMD and TMD/TMD heterostructures, several experimental observations are explained and predictions are made. Interlayer interactions in Gr/TMD have negligible effects. The Dirac cone of Gr remains unaffected, variations in the TMD electronic band gap are due to the minimal strain remaining in the simulation cells, and Fermi levels move closer to the conduction band minimum. In WX2/MoX2 VDWHs, where X = S, Se, interactions between TMD MLs result in hybridization of electronic states and energy eigenvalues split around the center of the BZ (Γ point). The magnitude of energy splitting depends on the interlayer distance and determines the valence band maximum at the center or the edge (K point) of the BZ. We find that interlayer transitions are more probable in WSe2/MoSe2 than in WS2/MoS2. In all VDWHs we examined, a small but universal redshift of the band gap for the TMDs is observed as opposed to a small blueshift for the Au/MoS2 heterostructure, in agreement with experiments. In hBN/TMD VDWHs, electronic properties of constituent MLs remain unaffected.
Our methodology also proves very useful in investigating defects and adsorption on 2D MLs. In conjunction with experiments, our DFT calculations show how n-doped WSe2 ML becomes a p-doped semiconductor via photochlorination. Energetics and EBSs show that chlorine fills chalcogen vacancies, neutralizing defect states close to the conduction band minimum and creating defect states close to valence band maximum. In another synergy with experiment, our DFT calculations show that Fe-vacancies in Fe2Se2 MLs give rise to a stretched lattice (which remains superconducting) at a relatively low energy cost. The absolute magnetic moment of the Fe atoms near the vacancies increases. Our EBS calculations demonstrate the effects of Fe vacancies in agreement with experiments. Sinking of the hole pocket and creation of new states above the hole pocket and below the electron pocket are produced by Fe vacancies. Finally, we present our theoretical results for hydrogen adsorption on Ni2P/CuCo2S4 heterostructure within another collaboration with experimentalists. Electron transfer towards the CuCo2S4 is related to the superior performance of the heterostructure as a catalyst for hydrogen evolution reaction.
Our DFT-based studies with the methodology we developed for building simulations and interpreting electronic band structures, combined with data from experiments, besides explaining observed phenomena, provide a general framework for making predictions which should be useful in future experiments and applications.”
11 Οκτωβρίου 2023
Πέμπτη 26/10/2023 και ώρα 10:00
στην αίθουσα Φ2 του Κτιρίου Τμήματος Φυσικής
Θέμα Διπλωματικής:
« Εφαρμογές Οπτικής Φασματοσκοπίας στην Μελέτη Καυσίμων »
Διμελής Επιτροπή: Δημήτριος Παπάζογλου, Πέτρος Σαμαρτζής
Περίληψη:
Στην παρούσα εργασία χρησιμοποιούνται τεχνικές οπτικής φασματοσκοπίας στην μελέτη υγρών καυσίμων. Συγκεκριμένα, μέσω μετρήσεων φασματοσκοπίας απορρόφησης UV-NIR, FTIR, Raman και φθορισμού, επιχειρούμε τον χαρακτηρισμό μιγμάτων ναυτιλιακού καυσίμου (blends) ως προς την σταθερότητά τους καθώς και την ανίχνευση νοθείας σε καύσιμα κίνησης με χημικούς διαλύτες. Η εξαγωγή πληροφορίας από τα φασματοσκοπικά δεδομένα γίνεται με την χρήση μεθόδων στατιστικής ανάλυσης11 Οκτωβρίου 2023
Τετάρτη 18 Οκτωβρίου 2023 και ώρα 13:00,
στην αίθουσα Α210
στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης.
Διμελής Επιτροπή: εράσιμος Αρματάς, Κωνσταντίνος Μήλιος
11 Οκτωβρίου 2023
Διμελής Επιτροπή: Μαρία Χατζηνικολαΐδου, Μαρία Βαμβακάκη
08 Οκτωβρίου 2023
Δείτε τα συνημμένα αρχεία που βρίσκονται στις παρακάτω υπερ-συνδέσεις:
05 Οκτωβρίου 2023
Δείτε τις σχετικές οδηγίες και τα απαιτούμενα έγγραφα.05 Οκτωβρίου 2023
Δείτε τη σχετική εγκύκλιο του υπουργείου.05 Οκτωβρίου 2023
Επιβλέπων Καθηγητής: Νικόλαος Πελεκάνος
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Παρασκευή 13 Οκτωβρίου 2023 και ώρα 12:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Τεχνολογίας Υλικών κ. Εμμανουήλ Μανιδάκη, με θέμα:«Development of Perovskite-Gallium Arsenide Double-Junction Photovoltaic Devices.»
Περίληψη "The perovskite solar cells represent today the most rapidly developed photovoltaic (PV) technology, as they combine low fabrication costs, high conversion efficiencies and the possibility to deposit on flexible substrates. On the other hand, the GaAs-based solar cells are still regarded as the reference technology in the PV industry, exhibiting the highest PV efficiencies of the field. In this thesis, we combine the benefits of the two material systems to provide a high-efficiency perovskite/GaAs tandem solar cell with enhanced characteristics. Accordingly, we have produced GaAs-based solar cell devices with PV efficiencies reaching ~15% values, comparing well with reported values for GaAs solar cells of similar design. We have developed optimized recipes for the deposition of every single layer of a full perovskite PV device, including the perovskite active layer, the electron and hole transporting layers, and the metal contacts. Specifically, we have successfully synthesized “red” perovskites with a gap around 650 nm needed in tandem perovskite/GaAs structures and have fabricated “red” perovskite solar cells with PV efficiency up to ~6.5%. This relatively modest value is most likely due to the “out-of-the-glovebox” deposition conditions in our laboratory. Nevertheless, combining a 1.77 eV perovskite solar cell provided by a fellow team along with our own GaAs solar cells, we managed to demonstrate a tandem 4-terminal device with a PV efficiency close to 23%, highlighting the benefit of the tandem configuration. Finally, we have shown that the deposition of MAPbI3 on native GaAs substrates is able to generate a giant passivation effect on GaAs, an effect that appears to be fully reversible, in the sense that the perovskite layer can be easily washed away and the PL intensity and spectral features of the GaAs substrate are fully restored to their pristine condition."