Τμήμα Επιστήμης & Μηχανικής Υλικών
06 Ιουνίου 2024
Δείτε το σχετικό σύνδεσμο: https://visit.uoc.gr/06 Ιουνίου 2024
Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του
κ. Ευάγγελου Ανδρέου
Επιβλέπων Καθηγητής: Γεράσιμος Αρματάς
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Πέμπτη 13 Ιουνίου 2024 και ώρα 10:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Ευάγγελου Ανδρέου, με θέμα:
«Porous Mesoscopic Assemblies of Spinel Chalcogenide and Transition Metal Phosphide Nanoparticles for Photocatalytic Energy Conversion Applications»
Περίληψη
The persistent rise in fossil fuel consumption, driven by the need to satisfy current energy demands, poses a significant environmental hazard, primarily due to the substantial emissions of hazardous gases into the atmosphere. While it is evident that renewable energy sources must replace a significant portion of fossil fuels, existing renewable energy production methods often lack efficiency and still present environmental challenges. Photocatalytic water splitting for hydrogen production stands out as a low-cost technique, offering a high solar to chemical conversion efficiency while emitting zero hazardous gases. Over the last few decades, the research community has explored various photocatalysts, including metal oxides, chalcogenides, nitrides, and more. Despite considerable progress in the development of photocatalytic materials, current synthetic methods often fail to provide precise control over electrochemical properties, morphology, and size of particles, leading to subpar photocatalytic performance.
In this dissertation, we introduce a new, cost-effective and environmentally friendly synthetic protocol for fabricating mesoporous networks of interconnected thiospinel (MIn2S4, M = Zn, Cd) nanocrystals, serving as versatile building blocks. This synthetic approach provides the advantage of adjusting the size of the constituent inorganic nanocrystals, offering significant benefits for photocatalytic energy conversion applications. Such a controllable synthesis enables precise engineering of the optical and electronic properties of the resulting photocatalysts. Namely, employing a straightforward polymer-templated self-assembly process, the thiospinel nanocrystals are organized into three-dimensional (3D) mesoporous networks with large internal surface area and we-defined pores. This structural arrangement leads to improved charge transfer kinetics and better intraparticle diffusion of the electrolyte. Given their advantageous characteristics, the mesoporous ensembles were investigated as potential photocatalysts for the water splitting reaction towards hydrogen evolution. Furthermore, by carefully selecting suitable co-catalysts such as Ni2P, Co2P, and β-Ni(OH)2, we uncovered their significant impact on the photochemical properties of the resulting composite structures. Utilizing a combination of spectroscopic and (photo)electrochemical techniques, we identified that the formation of the thiospinel/metal phosphide/hydroxide nano-heterojunctions significantly enhances the separation and transfer ability of the photogenerated charge carriers, leading to high photocatalytic stability and activities. Notably, these improvements exceed those reported for previously studied high-performance multicomponent thiospinel-based photocatalytic systems. Overall, this research presents a novel synthetic perspective for the rational design of photocatalysts and advances our understanding of next generation photocatalysts for clean energy conversion applications. By shedding light on key aspects of inorganic synthetic chemistry, interface engineering and photochemical reactions, the findings of this work make a significant contribution to the broader research endeavor focused on the development of sustainable energy technologies.
05 Ιουνίου 2024
Δείτε την Προκήρυξη, το ενημερωτικό μονόλεπτο βίντεο και πληροφορίες για το Βραβείο.30 Μαΐου 2024
Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του
κ. Μιχαήλ Μυλωνάκη
Επιβλέπων: Ιωάννης Ζαχαράκης
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Πέμπτη 6 Ιουνίου 2024 και ώρα 10:00 στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Μιχαήλ Μυλωνάκη, με θέμα:
«Wavefront Shaping for Microscopic Imaging of Biological Samples»
Περίληψη
“Imaging of biological samples is one of the driving application fields of optical microscopy. Although several other imaging techniques have been developed the simplicity, the effectiveness and the non-invasive nature of optical microscopy are the key factors of its widespread use in Biology.
An important limiting factor for optical microscopy is the scattering of light as it propagates through biological tissue. The inherent random variations of the optical properties, lead to a diffusion dominated propagation that drastically limits the effective imaging range down to 1 mm. On the other hand, recent advances in the spatial modulation of the light beam that illuminates the sample combined with analysis of the detected light distribution have opened the way to beat the diffusion limit.
Τhis PhD thesis was focused on leveraging the concept of the 'opaque lens' by utilizing engineered disorder in photonic structures. This involved developing novel scattering media and their integration with wavefront shaping into imaging modalities. Using this approach, we have reached to the development of a fully functional fluorescence microscope that, in several aspects, outperforms current instrumentation capable of performing in vivo fluorescence microscopy."
30 Μαΐου 2024
Δείτε τη σχετική προκήρυξη.
Λήξη προθεσμίας υποβολής δικαιολογητικών: 25/6/2024.
24 Μαΐου 2024
Δείτε τη σχετική προκήρυξη.
Δείτε τα αποτελέσματα.
24 Μαΐου 2024
Δείτε τη σχετική ανακοίνωση.23 Μαΐου 2024
Η ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Του φοιτητή Παύλου Σταματάκη,
θα γίνει την Παρασκευή 21/6/2024 και ώρα 12:00
στην αίθουσα Α210 στο κτήριο Μαθηματικών και Εφαρμοσμένων Μαθηματικών
Θέμα Διπλωματικής:
«Preparation and study of Molybdenum Oxide (MoOx) films for energy and environmental applications»
Διμελής Επιτροπή: Νικόλαος Πελεκάνος, Ηλίας Απεραθίτης
Περίληψη:
Planet biosphere alteration, along with the progressive depletion of non-renewable energy sources, calls for innovative and non-polluting technologies devoted to energy production and management. The impact of human activities on the environment and inevitably on human health is strong and evident. Thus, fundamental changes to the way energy is supplied, used, stored, transmitted, bought and sold, are necessary to satisfy energy demand and deal with environmental and health issues. Over the last decade, with the huge advance in the field of materials science and technology, there has been a considerable effort in overcoming these problems by developing the next generation of functional and smart materials. Transition metal oxides have attracted a lot of attention in the last two decades, mainly due to their flexibility and applicability in various fields of scientific interest, such as solar cells, gas sensors, supercapacitors, lithium-ion batteries etc.
In this project, MoOx thin films were fabricated by radio-frequency magnetron sputtering and their properties were examined under different fabrication conditions. The MoOx thin films were sputtered from a Mo target in varying r.f. power, total pressure as well as in a mixture of (Ar-O2-N¬2) gases in the plasma. The fabricated films were thermally treated after deposition at 400°C and 600°C under N2 gas atmosphere. The MoOx thin films were characterized using the following characterization techniques: SEM, EDX, XRD, Raman, UV-Vis-NIR and PL spectroscopy. The MoOx films were amorphous just after fabrication, with varying degree of transparency in the visible spectrum depending on the fabrication conditions. The post-annealed samples at 400°C were polycrystalline films with multiple crystal MoOx phases and lower transmittance values in the visible compared to their previous as-deposited state. Subsequent annealing at 600°C led to single-phase MoO3 crystals of orthorhombic structure. Furthermore, the MoOx thin films were also tested as sacrificial layers in lift-off processes for transferring multilayers on foreign substrates. The possible applications of the investigated MoOx thin films in sensing and optoelectronic applications will be addressed.
22 Μαΐου 2024
Ενημέρωση 21/5/2024: Δείτε εδώ τα αποτελέσματα.
Λεπτομέρειες έχουν αναρτηθεί στην ιστοσελίδα του Πανεπιστημίου στο σύνδεσμο "ανακοινώσεις". Επίσης, περίληψη της προκήρυξης δημοσιεύθηκε σήμερα στην εφημερίδα "Δημοκρατία".
Αιτήσεις θα παραλαμβάνονται από τη Γραμματέα της Κοσμητείας της Σχολής Θετικών Επιστημών κ. Παγώνα Αυγουστάκη.
Καταληκτική ημερομηνία κατάθεσης δικαιολογητικών η 22 Aπριλίου 2024.