Τμήμα Επιστήμης & Μηχανικής Υλικών
27 Ιουνίου 2024
Δείτε την απόφαση απονομής της υποτροφίας από τη Γενική Συνέλευση του τμήματος. Δείτε την προκήρυξη.26 Ιουνίου 2024
Η Δήλωση Προσθήκης Μαθημάτων αφορά μαθήματα, του Τμήματος μας, που έχουν δηλωθεί τα προηγούμενα Ακ. Έτη, τα οποία δεν έχουν προβιβάσιμο βαθμό και δεν έχουν δηλωθεί στο τρέχον ακαδημαϊκό έτος. Το πληροφοριακό σύστημα θα είναι ανοιχτό από 1 έως 20 Ιουλίου 2024.
Η «Δήλωση Προσθήκης Μαθημάτων» ΔΕΝ ΑΦΟΡΑ ΤΟΥΣ ΠΡΩΤΟΕΤΕΙΣ ΦΟΙΤΗΤΕΣ.
Η Αίτηση για «αναβαθμολόγηση μαθήματος» αφορά ΜΟΝΟ τα μαθήματα που έχετε περάσει στην εξεταστική του χειμερινού και την εξεταστική του εαρινού εξαμήνου του τρέχοντος ακαδημαϊκού έτους (2023-2024). Αίτηση μπορείτε να καταθέσετε στη γραμματεία με φυσική παρουσία ή ηλεκτρονικά (από το gov.gr)μέσω του ιδρυματικού τους email, στο secretariat@materials.uoc.gr, συμπληρώνοντας το σχετικό έντυπο αίτησης (.docx, .pdf) από 1 έως 20 Ιουλίου.
Σας τονίζουμε ότι το πλήθος των προσθηκών από προηγούμενα έτη καθώς και των αναβαθμολογήσεων του τρέχοντος έτους, συνολικά δε μπορεί να υπερβαίνει τα 8 μαθήματα.
25 Ιουνίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Structure and Dynamic Properties of Collagen-Based Hydrogels»
της Κωνσταντίνας Λυρώνη
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων Καθηγητής: Δημήτριος Βλασσόπουλος
Πέμπτη 27 Ιουνίου 2024
Ώρα 11:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
Collagen type I, the most abundant protein in mammals, due to the unique mechanochemical properties that exhibits, is widely used in the production of porous scaffolds via lyophilization for biomedical applications. To optimize its utilization, a deeper understanding of the link between structure and rheological properties of collagen suspensions is necessary. In this work, we explored the morphology of fibrillar collagen suspensions via confocal fluorescence microscopy and determined the characteristics of the networks such as the mesh size and the fiber diameter. For the investigation of their rheological response, because of the size of the fibers, we tested both cone-plate and parallel plate geometries and examined the possibility of confinement effects, as well as the effects of loading. Furthermore, we studied the effects of the loading history of the collagen suspension. The experimental results reveal shear thinning and a small yield stress, as well as the presence of wall slip. The latter is evidence in the preliminary data of Particle Image Velocimetry (PIV). Analysis of the viscoelastic properties of the suspension yielded a mesh size in the entangled regime, using different models that have been used to describe similar systems. The agreement with the confocal microscopy data is encouraging.25 Ιουνίου 2024
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Τίτλος
«Cs2AgBiBr6 Perovskites & 2D Material Conjugations for Gas Sensing Applications»
της Μαρίας Συσκάκη
μεταπτυχιακής φοιτήτριας του Τμήματος Επιστήμης και Μηχανικής Υλικών του Πανεπιστημίου Κρήτης
Επιβλέπων: Εμμανουήλ Στρατάκης
Πέμπτη 27 Ιουνίου 2024, Ώρα 13:00
H παρουσίαση θα πραγματοποιηθεί στην αίθουσα Τηλε-εκπαίδευσης (Ε130), στο κτήριο του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών, του Πανεπιστημίου Κρήτης
Abstract
Gas sensors are devices capable of detecting the presence and concentration of various gases, playing a crucial role in applications such as air-quality monitoring, public safety, agriculture, and medical diagnosis. The most common sensing materials are metal oxide semiconductors, which have low-cost production and high sensitivity, albeit necessitate high temperatures or other external stimuli to operate. Therefore, there is need to develop new sensing materials that can overcome this limitation, while maintaining or offering better sensing performance. An alternative and promising candidate material for gas sensing is the group of all-inorganic metal halide perovskites, having the general formula ABX3, where A is an organic or inorganic cation, B is a metal cation, and X is a halide anion. They have exhibited the ability to detect gases (O3 and H2) at very low concentrations (a few ppb), featuring fast response times (few hundreds of seconds) without the demand of external triggering. However, challenges persist, including environmental instability and toxicity of lead, commonly utilized as the metal cation. Taking into account the aforementioned properties and needs, this project aimed to fabricate lead-free double halide perovskite gas sensing elements (Cs2AgBiBr6) in the form of nano- or micro-crystals, employing a straightforward and room-temperature ligand-free precipitation method. Furthermore, the perovskites were conjugated with 2D graphene-based materials and Transition Metal Dichalcogenides (TMDs) to enhance their conductivity and their sensing ability. Diverse synthesis methods and characterization techniques were used to optimize the fabrication process and understand the sensing mechanisms of those novel materials. Cs2AgBiBr6 nanocrystals found to be capable of detecting low O3 concentrations down to 50 ppb, having response and recovery times around 1 minute.
25 Ιουνίου 2024
Η ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
Του φοιτητή Χαράλαμπου Ανδριανάκη, θα γίνει την
Πέμπτη 27/6/2024 και ώρα 10:00
στην αίθουσα Α2 στο κτήριο Τμήματος Επιστήμης Υπολογιστών
Θέμα Διπλωματικής:
« 3D-printed PLA scaffolds for Tissue Engineering Under Dynamic Cell Culture Conditions»
Διμελής Επιτροπή: Ιωάννης Ρεμεδιάκης, Ανθή Ρανέλλα
Περίληψη:
In recent years, mesenchymal stem cells (MSCs) have gained significant prominence in regenerative medicine due to their remarkable potential in tissue engineering. Additionally, cell cultures under dynamic conditions can simulate the physiological environment within the human body. Therefore, the fabrication of suitable scaffolds capable of supporting cell growth becomes pivotal. In this study, we cultured mouse bone-derived mesenchymal stem cells (BM-MSC cell line) within 3D printed polylactic acid (PLA) scaffolds. These scaffolds were developed using a Creality Ender 3 Pro 3D printer and used for culturing cells under both static and dynamic conditions. To facilitate the dynamic conditions, a custom-made microfluidic system was developed. The samples were examined using Scanning Electron Microscopy (SEM) and Confocal Microscopy. A comparative analysis was conducted to study the effect of dynamic conditions (flow-induced shear stress) on cell adhesion and proliferation, as well as responses to mechano-stimuli, including mechanotransduction and alterations in cell shape. The findings of this study offer valuable information regarding the combined effect of flow-induced shear stress and topography (3D scaffolds) on the behavior of MSCs. These results could be potentially useful in the fields of regenerative medicine and tissue engineering through the understanding of the cell – substrate - flow induced shear stress interactions.
17 Ιουνίου 2024
Οι φοιτητές/τριες που πληρούν τις προϋποθέσεις για την απόκτηση πτυχίου πρέπει να καταθέσουν τη σχετική αίτηση στη γραμματεία, ηλεκτρονικά μέσω του ιδρυματικού τους email, το διάστημα: 24/6/2024 – 30/6/2024.
Οι φοιτητές/τριες πρέπει να επιστρέψουν την φοιτητική τους ταυτότητα (σε περίπτωση απώλειας, θα πρέπει να προσκομίσουν δήλωση απώλειας από το gov.gr ή κλοπής από την αστυνομία).
Στην περίπτωση που περιμένετε την βαθμολογία σε μαθήματα, παρακαλούμε όπως σημειώσετε τους κωδικούς των μαθημάτων στο τέλος της αίτησης.
12 Ιουνίου 2024
Δείτε το σχετικό έγγραφο.
Οι αιτήσεις υποψηφιότητας πραγματοποιούνται μέχρι τη Δευτέρα 24/06/2024.
12 Ιουνίου 2024
Το ιταλικό κράτος χορηγεί υποτροφίες σε Έλληνες πολίτες για την ολοκλήρωση προγραμμάτων σπουδών, έρευνας και κατάρτισης σε ιταλικά εκπαιδευτικά ιδρύματα κατά το ακαδημαϊκό έτος 2024- 2025.
Οι αιτήσεις γίνονται ηλεκτρονικά στην ιστοσελίδα https://studyinitaly.esteri.it/
Η προθεσμία κατάθεσης των αιτήσεων είναι η 14η Ιουνίου 2024 , και ώρα 14:00 (τοπική Ιταλίας).
12 Ιουνίου 2024
Invitation to a Public Presentation of his Doctoral Thesis
Mr. Konstantinou Loukelis
Supervising Professor: Maria Chatzinikolaidou
(According to article 95, par. 3 of Law 4957/2022, Official Gazette 141 vol. A/21.7.2022)
On Wednesday, June 19, 2024 at 12:00 in the E-Learning room E130 of the Department of Mathematics and Applied Mathematics of the University of Crete, there will be a public presentation and support of the Doctoral Thesis of the PhD candidate of the Department of Materials Science and Engineering, Mr. Konstantinos Loukelis, on the subject :
«Fabrication of Electrospun and 3D Bioprinted Scaffolds for Bone Tissue Engineering Using Natural and Synthetic Biomaterials»
Abstract
Bone tissue engineering (BTE) is a broad research field that focuses on the use of biomaterial-based platforms combined with regeneration competent cell types and biochemical stimulants such as growth factors towards the fabrication of scaffolds and constructs that can restore, improve, or regenerate bone tissues. These biomaterial-based scaffolds should have a biocompatible character, controllable degradation rate, low immunogenicity, and mechanical attributes that are equivalent to those met in the native bone. State of the art biomaterials processing techniques such as electrospinning and 3D bioprinting have enabled the production of such scaffolds of varying 2D or 3D dimensionality, with topological and chemical structure that closely mimics that of bone tissue. The main objective of this thesis was the development of innovative bone regeneration promoting scaffolds and constructs based on the combination of two water soluble polymers, gellan gum (GG) and polyvinyl alcohol (PVA), via the state of the art technologies of electrospinning and 3D bioprinting. Through optimization of biomaterials composition, we produced stable GG:PVA nanofibrous scaffolds of various concentration ratios and verified that increased GG concentration and thermal treatment of scaffolds led to significantly reduced degradation rates, matching those of flat bones, while all compositions showed excellent osteogenic responses in the presence of pre-osteoblastic cells. We then biofabricated 3D bioprinted constructs, containing PVA:GG at different ratios, with and without the implementation of nano-hydroxyapatite (nHA), an osteogenic inorganic material present in human bone, and examined their biomechanical responses. It was corroborated that lower GG:PVA ratio compositions presented enhanced printability and cell viability than the stiffer counterparts, while the presence of nHA resulted in significantly enhanced printing fidelity and osteogenic capacity. Based on the optimization of the GG:PVA bioprinting conditions, we bioprinted constructs with human adipose derived stem cells (ADSCs), by incorporating zinc substituted mesoporous bioactive glasses (Zn-MBGs) in the same polymeric matrix, and observed excellent osteogenesis and chondrogenesis related cellular responses showcasing promising aspects for further use of these composite bioinks as potential personalized human osteochondral implants.
07 Ιουνίου 2024
Πρόσκληση σε Δημόσια Παρουσίαση της Διδακτορικής Διατριβής του
κ. Κωνσταντίνου Μαυράκη
Επιβλέπων: Ιωάννης Ζαχαράκης
(Σύμφωνα με το άρθρο 95, παρ. 3 του Ν. 4957/2022, ΦΕΚ 141 τ. Α΄/21.7.2022)
Την Τρίτη 11 Ιουνίου 2024 και ώρα 14:00
στην αίθουσα Τηλεεκπαίδευσης Ε130 του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, θα γίνει η δημόσια παρουσίαση και υποστήριξη της Διδακτορικής Διατριβής του υποψήφιου διδάκτορος του Τμήματος Επιστήμης και Μηχανικής Υλικών κ. Κωνσταντίνου Μαυράκη, με θέμα:
«Development of a Multiparametric Label-Free Imaging System for the Early Diagnosis of Neurodegenerative Disorders through the Ocular Cavity»
Περίληψη
“In this novel imaging system, we have combined three non-invasive and label-free imaging techniques: Optoacoustic microscopy (OAM) , non-linear microscopy (NLM) and Stimulated Raman Scattering (SRS) microscopy. OAM exhibits resolution comparable to that of optical microscopy, but can penetrate deeper into high-scattering tissue. The increased possibilities stem from the fundamental scattering difference between light and sound, which constitute the signal for optical microscopy and OAM, respectively. NLM includes two photon excitation fluorescence (TPEF) and Second Harmonic Generation (SHG). OAM, TPEF, SHG and SRS are combined complementary and thus reveal a wide range of discrete and non overlapping information. TPEF presents crisp contrast between bio-molecules that possess different excitation or emission spectra. SHG can provide information about biological structures such as lipid depositions while OAM pinpoints photon absorbing molecules with non-radiative relaxation. SRS imaging provides chemical information with high specificity allowing molecular pattern recognition inside tissues and their association with diseases and pathological conditions. Using these techniques, even sensitive and unreachable structures like the retina and the ocular cavity can be investigated with high resolution. The nerve fibers in the ocular cavity are essentially an extension of the central nervous system and since several neurodegenerative disorders present symptoms in the cavity, they could be diagnosed before the manifestation of conventional symptoms. The presence of possible bio-markers was investigated with TPEF, SHG and OAM in retina samples from mouse models of Alzheimer's disease."